ОБРАЗОВАТЕЛЬНАЯ АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОЛЖСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Н. ТАТИЩЕВА» (институт)

УТВЕРЖДАЮ

Председатель Приемной комиссии

В. А. Якушин

2016 г.

ПРОГРАММА

вступительного испытания

на обучение по образовательным программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре по специальной дисциплине соответствующей направленности Направление подготовки 09.06.01 Информатика и вычислительная техника

профиль подготовки

05.13.15 Вычислительные машины, комплексы и компьютерные сети

СОДЕРЖАНИЕ

І. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
РАЗДЕЛ II. ФОРМА ПРОВЕДЕНИЯ И СТРУКТУРА	
ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА	4
РАЗДЕЛ III. ОСНОВНОЕ СОДЕРЖАНИЕ	6
РАЗДЕЛ IV. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ	
АБИТУРИЕНТОВ, КРИТЕРИИ ОЦЕНКИ ОТВЕТОВ	13
РАЗДЕЛ V ЛИТЕРАТУРА ДЛЯ ПОДГОТОВКИ К ВСТУПИТ	ГЕЛЬНЫМ
ИСПЫТАНИЯМ	13
РАЗДЕЛ VI. ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ЗАДАНИЙ И ВОП	POCOB
ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ	16

І. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.Статус программы

испытаний Программа вступительных ПО дисциплине «Вычислительные машины, комплексы и компьютерные сети» (далее по Программа вступительных испытаний) тексту составлена абитуриентов, поступающих на обучение по образовательным программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по программам специалитета и (или) магистратуры, и в соответствии с Порядком приема на обучение ПО образовательным программам научно-педагогических аспирантуре подготовки кадров (приказ Минобрнауки России № 233 от 26 марта 2014 года).

Программа конкретизирует содержание предметных тем вступительных испытаний. Она служит основанием для вопросов и заданий, предлагаемых в ходе вступительных испытаний.

2. Структура программы

Программа вступительных испытаний включает шесть разделов:

- 1. Пояснительная записка.
- 2. Форма проведения и структура вступительного экзамена.
- 3. Основное содержание дисциплины.
- 4. Требования к уровню подготовки абитуриентов, критерии оценки ответов.
 - 5. Литература для подготовки к вступительным испытаниям.
- 6. Примерный перечень заданий и вопросов вступительные испытания.

РАЗДЕЛ II. ФОРМА ПРОВЕДЕНИЯ И СТРУКТУРА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА

2.1 Форма проведения и структура вступительного экзамена для граждан РФ

Вступительные испытания по дисциплине «Вычислительные машины, комплексы и компьютерные сети» проводятся в устной, в письменной форме а также с сочетанием указанных форм. Для подготовки ответа поступающие используют экзаменационные листы, которые хранятся в личном деле поступающего не менее одного года.

2.2 Форма проведения и структура вступительного экзамена для иностранных граждан

Для иностранных граждан, или экзамен проводится в той же форме.

2.3 Особенности проведения вступительного экзамена для граждан с ограниченными возможностями здоровья

При проведении вступительных испытаний для граждан с OB3 обеспечивается соблюдение следующих требований:

- вступительные испытания проводятся в отдельной аудитории, количество поступающих в одной аудитории не более 6 человек;
- продолжительность вступительных испытаний по письменному заявлению поступающих, поданному до начала проведения вступительных испытаний, может быть увеличена по решению организации, но не более чем на 1,5 часа;
- допускается присутствие ассистента (для инвалидов по слуху переводчика жестового языка, для слепоглухих тифлосурдопереводчика), оказывающего поступающим необходимую техническую помощь с учетом их индивидуальных особенностей (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с экзаменатором);
- поступающим предоставляется в доступной для них форме инструкция по порядку проведения вступительных испытаний;
- поступающие с учетом их индивидуальных особенностей могут в процессе сдачи вступительного испытания пользоваться необходимыми им техническими средствами.

Дополнительно при проведении вступительных испытаний обеспечивается соблюдение следующих требований в зависимости от категорий поступающих с ограниченными возможностями здоровья:

- а) для слепых:
- задания для выполнения на вступительном испытании, а также инструкция о порядке проведения вступительных испытаний

зачитываются ассистентом;

- письменные задания диктуются ассистентом;
- б) для слабовидящих:
- обеспечивается индивидуальное равномерное освещение не ниже 300 лк;
- поступающим, для выполнения задания при необходимости могут использовать увеличивающее устройство;
- задания для выполнения, а также инструкция о порядке проведения вступительных испытаний оформляются увеличенным шрифтом, возможно также использование собственных увеличивающих устройств;
- в) глухие и слабослышащие могут пользоваться звукоусиливающей аппаратурой индивидуального пользования;
- г) слепоглухие пользуются услугами тифлосурдопереводчика (помимо требований, выполняемых соответственно для слепых и глухих);
- д) для лиц с тяжелыми нарушениями речи, глухих, слабослышащих все вступительные испытания по желанию поступающих могут проводиться в письменной форме;
- е) для лиц с нарушениями опорно-двигательного аппарата (тяжелыми нарушениями двигательных функций верхних конечностей или отсутствием верхних конечностей):
 - письменные задания диктуются ассистентом;
- по желанию поступающих все вступительные испытания могут проводиться в устной форме.

РАЗДЕЛ III. ОСНОВНОЕ СОДЕРЖАНИЕ

Тема 1. Программирование

- 1. Определение алгоритма, Способы описания алгоритмов. Правила оформления схем алгоритмов. Разновидности структур алгоритмов: линейные, разветвляющиеся и циклические алгоритмы. Вложенные циклы.
- 2. Структуры данных и их отображение в памяти ЭВМ, Связь алгоритма со структурами данных. Особенности разработки алгоритмов методом «сверху вниз».
- 3. Классификация языков программирования. Основные характеристики и элементы языка СИ, Структура программы. Простейшие тины данных.

Классификация операторов, Правила записи выражений. Оператор присваивания. Операторы ввода-вывода, Программирование линейных алгоритмов. Разветвляющиеся алгоритмы. Операторы цикла. Программирование циклов,

4. Процедуры. Особенности оформления и обращения к процедурам.

Функции. Особенности оформления и вызова. Рекурсивные функции. Примеры программ с использованием процедур и функций.

Тема 2. Дискретная математика

- 1. Типы графов. Маршруты и связность. Графы пересечений. Деревья.
- 2. Независимые циклы и коциклы. Гамильтоковы графы, Характеризация реберных графов.
 - 3. Раскраски. Однозначно раскрашиваемые графы. Гомоморфизмы. Матрица инциденций. Орграфы. Волновой алгоритм. Алгоритм Йена

Тема 3. Математическая логика

- 1. Множества и слова. Язык исчисления: высказываний. Частично упорядоченные множества. Система аксиом и правил вывода. Эквивалентность формул.
- 2. Семантика исчисления высказываний, Интуиционная логика. Рекурсивные функции. Примитивно-рекурсивыне функции.
 - 3. Временные и алгоритмические логики. Логика Хоара,
 - 4. Алгоритм Дейкстрв. Алгоритм Флойда. Алгоритм Лиггла

Тема 4. Операционные системы и системное программное обеспечение

1. Понятие операционной системы автономного компьютера. Назначение и функции операционной системы. Критерии классификации

операционных систем. Функциональные компоненты автономной ОС. Понятие ресурса. Управление ресурсами. Защита данных.

- 2. Понятие сетевой операционной системы. Сетевые и распределенные ОС. Функциональные компоненты ОС Сетевые и распределенные ОС. Функциональные компоненты сетевой ОС. Сетевые службы и сетевые сервисы.
- 3. Многослойная структура ОС, Ядро и вспомогательные модули ОС. Ядро в привилегированном режиме. Аппаратная зависимость и переносимость ОС Типовые средства аппаратной поддержки ОС Машинно-зависимые компоненты ОС Переносимость операционной системы. Двоичная совместимость и совместимость исходных текстов. Совместимость и множественные прикладные среды.
- 4. ОС с монолитным ядром, Концепция построения ОС с монолитным ядром. Преимущества и недостатки монолитного ядра. Микроядерная архитектура. Концепция микроядерной архитектуры, Преимущества и недостатки микроядерной архитектура.
- 5. Планирование и диспетчеризация потоков. Алгоритмы планирования. Вытесняющие и не вытесняющие алгоритмы планирования. Алгоритмы планирования, основанные на квантировании. Алгоритмы планирования, основанные на приоритетах. Смешанные алгоритмы планирования. Планирование в системах реального времени.
- 6. Цели и средства синхронизации, Необходимость синхронизации и гонки. Критическая секция. Блокирующие переменные. Семафоры. Тупики.
- 7. Функции ОС по управлению памятью. Алгоритмы распределения памяти. Распределение памяти динамическими разделами. Перемещаемые разделы. Свопинг и виртуальная память. Стратегия подкачки страниц при свопинге.
- 8. Страничное распределение. Сегментное распределение. Сегментно-страничное распределение. Совместное использование памяти, Защита памяти. Аппаратная поддержка виртуальной памяти на примере микропроцессоров семейства Intel Pentium. Механизмы преобразования адресов.
- 9. Кэширование данных. Иерархия запоминающих устройств. Кэш-память. Принцип действия кэш-памяти. Проблема согласования данных. Способы отображения основной памяти на кэш. Выполнение запросов в системах с кэш-памятью. Программная и аппаратная реализация механизма кэширования.
- 10. Основные понятия безопасности на уровне ОС. Конфиденциальность, целостность и доступность данных. Базовые технологии безопасности. Шифрование. Симметричные и ассиметричные алгоритмы шифрования. Примеры применения шифрования в ОС.

- 11. Процессы и потоки. Задания, Диспетчер задач. Диспетчеризация потоков. Дисциплины диспетчеризации. Классы приоритетов. Мониторинг процессов и потоков. Создание и завершение процесса. Использование потоков при разработке приложений, Создание потока. Завершение потока. Получение и использование информации о потоке.
- 12. Синхронизация взаимодействующих вычислительных потоков. Независимые и взаимодействующие потоки. Критические участки. Синхронизация потоков без поддержки операционной системы. Семафорные примитивы Дейкстры.
- 13. Синхронизация потоков средствами операционной системы. Средства синхронизации потоков. Мьютексы. Функции ожидания одного и нескольких событий. Применение объектов ядра мьютекс вместо критических секций. Отказ от объекта мыотекс. Семафоры. События и их использование.
- 14. Защищенный режим процессоров Intel и его возможности. Сегментная и страничная организация памяти. Дескрипторные таблицы. Формат дескрипторов. Условие доступа к сегменту. Регистры МП Intel 80286 и Intel 80386, используемые в защищенном режиме. Метод Родена.
- 15. Разделы в виртуальном адресном пространстве процесса. Адресное пространство процесса ОС MS Windows. Резервирование регионов в адресном пространстве и передача физической памяти региону. Освобождение регионов. Файлы, проецируемые в память. Создание и использование куч. Получение информации о состоянии виртуальной памяти.
- 16. Статистическое и динамическое связывание. Динамически связываемые библиотеки (Dinamic Linked Libraies DLL), их создание и использование. Области применения DLL. Основные DLL MS Windows. Достоинства и недостатки DLL. Способы подключения библиотек. Обмен данными между процессорами.

Тема 5. Базы данных

- 1. Базы данных и их свойтва. Системы управления базами данных (СУБД). Компоненты среды СУБД.
- 2. Иерархическая модель данных (ИМД). Сетевая модель данных (СМД). Реляционная модель данных (РМД). Правила Кодда для реляционной СУБД.
- 3. Определение требований к операционной обстановке. Выбор СУБД и других программных средств. Построение логической модели. Понятие целостности.
- 4. Функциональные зависимости. Первая нормальная форма (INF). Вторая нормальная форма (2NF). Транзитивные зависимости и третья нормальная форма (3NF). Нормальная форма Бойса-Кодда (BCNF).

Многозначные зависимости и четвертая нормальная форма (4NF). Зависимое по соединению и пятая нормальная форма (5NF).

Тема 6. Компьютерная графика

1. Графические дисплеи, программные средства компьютерной графики, архитектура графических систем.

Графические операционные системы, графические редакторы,

- 2. Двумерные объекты. Алгебраическая: и параметрическая формы представления линий. Ограниченные области, многоугольники. Примитивы и сложные объекты. Визуализация алгебраических линий. Алгоритм визуализации отрезков. Визуализация кривых второго порядка.
- 3. Методы синтеза сложных фигур из примитивов. Теоретикомножественные операции над двумерными объектами. Алгоритм теоретико-множественных операций над двумерными объектами. Построчный принцип организации алгоритма. Формат исходных данных. Структуры данных для интерактивного конструирования сложных фигур. Структуры для представления примитивов. Структуры для представления сложных объектов, синтезируемых с помощью теоретико-множественных операций.

Тема 7. ЭВМ и интерфейсы периферийных устройств

- 1. Структурная организация процессора. Неймановская архитектура ЭВМ. Функциональная организация процессора. Классификация Флинна. Классификация CISC и RISC.
- 2. Иерархическая структура памяти. Адресная память. Ассоциативная память.
- 3. Принцип локальности ссылок. Полностью ассоциативная кэшпамять. Кэш-память с прямым отображением. Множественноассоциативная кэш-память.
- 4. Когерентность кэш-памяти в мультипроцессорных системах. Протоколы наблюдения при кэшировании. Протокол MESI.
- 5. Понятие о конвейере в ЭВМ. Структурная схема конвейера. Линейные и нелинейные конвейеры. Временные характеристики конвейера. Временная развертка конвейера.
- 6 Прогнозирование ветвления. Динамическое и статическое прогнозирование. Спекулятивное выполнение команд. Буфер прогнозирования адресов переходов.
- 7. Классификация параллельных архитектур. Мультатитровыс архитектуры. Массивно-параллельные компьютеры Cray T3D.
- 8. Суперскалярная архитектура процессора PENTIUM. Конвейер команд PENTIUM II. Блок вызова/декодирования. Блок отправки/выполнения, Блок возврата.

- 9. Классификация кластерных систем. Топология кластеров. Системы с массовой параллельной обработкой МРР.
- 10. Функции системы ввода-вывода и ее структура. Центральносинхронный принцип управления, организация параллельного выполнения операций обработки и ввода-вывода. Средства совмещения операций обработки и ввода-вывода: прерывание, приостановка. Исключение простоев в работе ЦП: однопрограммный режим работы, опережающий ввод, мультипрограммный режим.
- 11. Понятие интерфейса и его характеристики. Организация интерфейсов-последовательная и параллельная, синхронная и асинхронная передачи информации. Системные, локальные, приборные интерфейсы и интерфейсы периферийно-радиальные, магистральные, цепочные и комбинированные интерфейсы. Схема построения, работа.
- 3. Способы обмена информацией. Среда интерфейса-передачи по однонаправленной линии, по двунаправленной линии и по оптоволоконной линии. Схемы, работа. Функции контроллеров и их. техническая реализация.
- 4. ВЗУ на магнитных носителях. Физические основы регистрации информации на подвижном носителе. Запись и чтение информации магнитной головкой схемы, особенности. Представление цифровой информации на носителе способы записи без возврата к нулю, частотной (ЧМ) и фазовой (ФМ) модуляции. Временные диаграммы. Схемы реализации, преимущества и недостатки,
- 5. Флеш-память. История создания, принцип работы, архитектура флеш-памяти структуры ячеек NOR и NAND, Схемы организации ячеек, их функционирование.

Тема 8. Микропроцессорные системы

- 1. Основные блоки МПС Типы шин. Процессоры МПС. Организация подсистем памяти. Структуры адресных пространств МПС, ПЗУ и ОЗУ. Распределение адресов. Проектирование и расчет блоков ОЗУ и ПЗУ. Организация подсистем ввода-вывода. Основные типы систем ввода-вывода. Базовые схемы ввода-вывода.
- 2. Особенности разработки структурных и принципиальных схем МПС. Расчет нагрузок. Средства разработки и отладки МПС.
- 3. Семейства микропроцессоров фирмы Интел. Младшие представители. Старшие представители семейств микропроцессоров фирмы Интел.
- 4. Семейства микропроцессоров фирмы Моторола. Типичные представители.
- 5. Традиционные пути повышения производительности МПС и ВС. Мультимикропроцессорные системы. Транспьютеры. Структура, области

применения. Нетрадиционные пути повышения производительности ВС. Представление о нейрокомпьютерах.

Тема 9. Сети и телекоммуникации

- 1. Модель взаимодействия открытых систем. Эталонная модель взаимосвязи открытых систем. Уровни и протоколы. Основные функции уровней. Взаимодействие уровней, межуровневый интерфейс. Способы реализации.
- 2. Аналоговые каналы передачи данных. Способы модуляции. Модемы. Цифровые каналы передачи данных. Разделение каналов по времени и частоте. Характеристики проводных линий связи.
- 3. Кодирование информации. Количество информации и энтропия. Самосинхронизирующиеся коды. Способы контроля правильности передачи информации. Алгоритмы сжатия данных. Способы коммутации.
- 4. Базовые технологии локальных сетей. Методы доступа. Множественный доступ с контролем несущей и обнаружения конфликтов. Маркерные методы доступа. Доступ по требованию.
- 5. Стандарт 100BASE. Основные характеристики, оборудование. Сета Fast Ethernet. Основные характеристики. Оборудование. Сети Gigabit Ethernet.
- 6. Структура функции глобальных сетей. Транспортные И функции. Маршрутизация. Структура И информационные услуги территориальных сетей. Структура, интерфейсы DTE-DCE. Типы глобальных сетей.
- 7. Глобальные сети на основе выделенных линий. Аналоговые и цифровые выделенные линии. Особенности технологии SDH. Глобальные сети на основе сетей с коммутацией каналов. Организация аналоговых телефонных сетей. Особенности технологии ISDN. Глобальные сети с коммутацией пакетов. Особенности технологий Frame Relay, ISDN, ATM.

Тема 10. Проектирование вычислительных систем

- 1. Перечень основных показателей ВС. Технические средства ВС. Сосредоточенные и распределенные ВС. Типы интерфейсов многомашинных систем. Режимы работы систем.
- 2. Основные задачи теории вычислительных систем. Задача анализа я методы ее решения. Задачи идентификации и синтеза BC и методы их решения.
- 3. Марковские модели вычислительных процессов и надежности ВС. Модели массового обслуживания. Типы СМО. Параметры и характеристики. Стохастические сети. Параметры и характеристики

сетевых моделей. Аналитические и имитационные методы исследования ВС Экспериментальные методы исследования систем.

- 4. Стадии проектирования ВС Оценка рабочей нагрузки с помощью измерений. Однородное и неоднородное представление нагрузки. Переход от неоднородного к однородному представлению рабочей нагрузки.
- 5. Стадия технического предложения. Две постановки задачи синтеза. Определение базовой конфигурации ВС. Основные условия. Выбор типовых устройств для базовой конфигурации ВС.
- 6. Оптимизация структуры BC. Методы. Построение структурной схемы по модели. Обеспечение надежности BC.

РАЗДЕЛ IV. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ АБИТУРИЕНТОВ, КРИТЕРИИ ОЦЕНКИ ОТВЕТОВ

На экзамене абитуриент должен показать:

- знание методики использования программных средств для решения практических задач;
- способность разрабатывать модели компонентов автоматизированных систем, включая модели баз данных и модели человека-машинного интерфейса;
- способность разрабатывать компоненты программно-аппаратных комплексов и баз данных, используя современные инструментальные средства и технологии программирования.

Поступающий должен уметь:

- инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем
 - настраивать программно-аппаратные системы и комплексы;
- решать стандартные задачи профессиональной деятельности с применением инфокоммуникационных технологий.

Критерии оценки:

<u> </u>			
Отлично	Абитуриент показал отличные теоретические		
	знания и практические навыки		
Хорошо	Абитуриент показал хорошие теоретические		
	знания и практические навыки		
Удовлетворительно	Абитуриент показал хорошие теоретические		
	знания		
Неудовлетворительно	Абитуриент не показал теоретические знания и		
	практические навыки		

РАЗДЕЛ V ЛИТЕРАТУРА ДЛЯ ПОДГОТОВКИ К ВСТУПИТЕЛЬНЫМ ИСПЫТАНИЯМ

Основная:

1. Павловская, Т. А. С/С++. Программирование на языке высокого уровня [Текст] : учебник для вузов доп. МО . - СПб. : Питер, 2009. - 461 с. Новиков, Ф.А. Дискретная математика для программистов [Текст] /. - СПб. : Питер, 2006. - 363 с.

- 2. Хорев, П. Б. Объектно-ориентированное программирование : учеб. пособие рек. УМО М. : Издательский центр "Академия", 2012. 447 с.
- 3. Тарасенко, Ф. П. Прикладной системный анализ [Текст] : учеб. пособие доп. Советом УМО . М. : КноРус, 2010. 219 с.
- 4. Ершов ВХ Математическая логика. Учебный курс. Мл «Лаборатория базовых знаний». 2003. 290 е.: ил.
- 5. Новожилов О.П. Архитектура ЭВМ и систем : учеб. пособие для бакалавров доп. УМО . М. : Изд-во Юрайт, 2012. 527. с.
- 6. Акимов О.Е. Логика, группы, графы. Учебное издание Мл «Лаборатория базовых знаний», 2003, 376 с: ил.
- 7. Гордеев А. В. Операционные системы [Текст] : учебник для вузов доп. МО . СПб. : Питер, 2009. 415 с.
- 8. Молчанов А.Ю. Системное программное обеспечение: учебник для вузов рек. МО. СПб. : Питер, 2010. 397 с.
- 9. Советов Б. Я. Базы данных : теория и практика [Текст] : учебник для бакалавров рек. УМО /. М. : Изд-во Юрайт, 2012. 463 с.
- 10.Петров М. Н. Компьютерная графика (+CD) [Текст] : учебник доп. МО РФ . СПб. : Питер, 2011. 532 с.
- 11.Гусев В.Г., Гусев Ю.М. Электроника и микропроцессорная техника. Учебник для ВУЗов. М.: Высшая школа, 2008.-798 с.
- 12.Гук М. Аппаратные интерфейсы ПК. Энциклопедия, Спб.: Питер, 2003 528 с.
- 13.Олфер ВГ,, Олифер НА. Компьютерные сети. Принципы, технология, протоколы Спб: Питер. 2005-668 с.

Дополнительная:

- 14. Капитонова Ю.В. Лекции по дискретной математике. СПБ: БХВ-Петербург, 2004. 614 с.
- 15.Олифер В.Г., Олифер НА Сетевые операционные системы. Учебник для ВУЗов. Спб.: Питер, 2007-538 с.
- 16.Дейтел Х.М. Дейтел П.Дж., Чофнес ДР., Операционные системы: распределенные системы, сети, безопасность. Издание 3-е* Бином, 2006 704 с,
- 17. Голенищев Э.П., Клименко И.В. Информационное обеспечение систем управления. Ростов н/Д: Феникс, 2003 -352 с.
- 18. Малыхина М.П. Базы данных: основы, проектирование, использование. СПб.: БХВ-Петербург, 2004. 512 с.
- 19.Мирошниченко Г.А. Реляционные базы данных: иерархические приемы оптимальных решений. СПб.: БХВ-Г1етербург, 2005.-400 с.

- 20. Лачин В.И. Электроника и микропроцессорная техника: Дипломное проектирование систем автоматизации и управления. Учебн. Ростов на Дону: Феникс, 2007.-568 е.
- 21. Никулин Е.А. Компьютерная геометрия и алгоритмы машинной графики. -Спб,: БХВ-Летербург. 2003
- 22.Пятибратов А.П., Гудыно Л.П., Кириченко А А Вычислительные системы, сети и коммуникации: Учебн. пособие М.: Финансы и сгатистака, 2006 30 п.л.
- 23.Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем: Учебник дтя ВУЗов Спб.: Питер, 2007 -667 с.
- 24.Олфер В.Х., Олифер Н.А. Новые технологии и оборудование IP-сетей, Спб.: БХВ-чжнкт-Пешрбург, 2004 -512 с.

РАЗДЕЛ VI. ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ЗАДАНИЙ И ВОПРОСОВ ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

- 1. История развития средств вычислительной техники. Роль отечественных ученых в разработке ЭВМ. Классификация ЭВМ. Обобщенные структуры ЭВМ общего назначения, мини- и микроЭВМ. Основные характеристики ЭВМ. Модельный и модельный принципы разработки ЭВМ
- 2. Шины передачи данных. Передающие схемы с тремя состояниями. Регистры хранения и сдвига, счетчики, дешифраторы, селекторы, мультиплексоры. Программируемые логические матрицы. Сумматоры, их классификация. Синтез комбинационного сумматора, накапливающий сумматор. Методы ускоренного переноса. Десятичный сумматор. Матричный сумматор. Схемы сравнения и методы их построения
- 3. Классификация и основные технические характеристики запоминающих устройств (ЗУ). Оперативные ЗУ (ОЗУ). Назначение и принцип работы.
- 4. Полупроводниковые ОЗУ. Статические и динамические элементы памяти. Организация ЗУ на кристалле. Организация модулей и блоков полупроводниковой оперативной памяти.
- 5. Организация ОЗУ на ферритовых сердечниках с прямоугольной петлей гистерезиса.
- 6. Постоянные ЗУ (ПЗУ), их классификация. Организация полупроводниковых ПЗУ. Магнитные ПЗУ.
- 7. Криогенные, оптоэлектронные, голографические и другие типы ПЗУ. Внешняя память. Организация и основные устройства на магнитных барабанах, дисках, лентах, картах. Области использования устройств.
- 8. Устройства ввода-вывода. Ввод, вывод и обработка графической информации. Графические и текстовые дисплеи. Оптико-электронные устройства для ввода текстовой информации. Речевой ввод-вывод.
- 9. Структура и организация запоминающих устройств. Иерархические, секционированные, адресные, безадресные ассоциативные запоминающие устройства. Структура данных и структура памяти.
- 10. Страничная и странично-сегментная организация памяти. Защита памяти. Многоканальное управление памятью.
 - 11. Процессоры и организация их работы
- 12. Назначение и обобщенная структура процессора, основные характеристики. Операционная и управляющие части процессора.
- 13. Принципы кодирования управляющей информации и неймановская схема вычислительной машины. Адресные и безадресные системы кодирования. Методы адресации и их связь с характеристиками и структурой памяти машины.
 - 14. Форматы команд и их связь со структурой процессора.
 - 15. Функциональная организация центрального процессора (ЦП).
- 16. ЦП с непосредственными связями и ЦП с магистральной структурой. Матричные, конвейерные и ассоциативные процессоры.
- 17. Устройства управления (УУ). Аппаратные УУ. Схемы однофазной, двухфазной и много-фазной синхронизации. УУ с постоянным и переменным циклом работы.

- 18. Микропрограммные УУ. Методы кодирования и минимизации объема управляющей памяти. Реализация микропрограммного УУ на основе программируемых логических матриц с репрограммируемых ПЗУ.
- 19. Прерывание программ. Основные уровни прерывания и организация приоритетного обслуживания запросов.
- 20. Особенности построения и функционирования процессоров мини- и микроЭВМ.
- 21. Организация ввода-вывода. Ввод-вывод и обмен информацией в ЭВМ и вычислительных системах. Каналы ввода-вывода, виды каналов. Понятие канальной программы. Структуры и функционирование селекторного и мультиплексного каналов.
- 22. Унифицированные системы связей интерфейсы, их основные типы и выполняемые функции.
- 23. Телеобработка информации, ее организация. Структуры звеньев передачи данных. Абонентские пульты, мультиплексоры передачи данных. Аппаратура передачи данных.
- 24. Особенности организации микропроцессоров мини- и микроЭВМ. Эволюция микропроцессоров, их поколения. Микропроцессорные комплекты (МПК). Обще принципы организации микроЭВМ на основе МПК. Архитектура микроЭВМ. Требования к математическому и программному обеспечению.
- 25.Особенности организации мини-ЭВМ, форматы данных, память, система ввода-вывода.
- 26. Особенности архитектуры специализированных ЭВМ (СЭВМ) их классификация. Требования, критерии и ограничения, используемые при проектировании СЭВМ. Система прерывания в СЭВМ.
- 27. Особенности элементной базы СЭВМ. Средства отображения информации в системах с СЭВМ. Инженерно-психологические требования к средствам отображения.
- 28. Аналого-цифровые (АЦП) и цифроаналоговые (ЦАП) преобразователи. Принципы выбора и обоснования технических требований в СЭВМ.
- 29. Способы комплексирования ЭВМ. Многомашинные комплексы, многопроцессорные вычислительные комплексы, типы организации систем. Связь и характер взаимодействия аппаратных и программных средств при организации вычислительных комплексов и систем.
- 30. Структура и принцип действия вычислительной системы коллективного пользования и ВС с разделением времени. ВС реального времени и вычислительные комплексы для управления технологическими процессами.
 - 31. Показатели качества функционирования ВС.
- 32. Основные режимы организации вычислительного процесса. Принципы мультипрограммирования. Структура и работа систем мультипрограммирования. Пользовательский интерфейс систем мультипрограммирования.
- 33. Определение операционных систем. Основные компоненты ОС. Базовые характеристики ОС: одновременность, разделение, базы данных, модульность. Проблемы ОС: надежность, сложность, эффективность, совместимость.
- 34. Мотивировка параллельного программирования асинхронных взаимодействующих процессов. Центральное место процесса в концепции виртуальной машины. Взаимодействия процессов. Механизмы синхронизации, методы реализации. Функции и стратегии планирования процессов. Тупиковые ситуации. Методы разрешения и предотвращения тупиков.

- 35. Концентрация ресурса и пользователя, системы диспетчеризации. Стратегии распределения ресурсов. Стратегии оценок дисциплин диспетчеризации. Защита ресурсов.
- 36. Структура данных в памяти. Функции управления памятью. Стратегии распределения одноуровневой и иерархической памяти. Перспективные тенденции в управлении памятью.
 - 37. Управление информацией. Структура и состав файл-систем.
- 38. Логическая и физическая организация файл-системы. Процедуры доступа. Верификация управления доступом. Операции над файлами. Восстановление системных сбоев. Тенденции в управлении информацией
- 39. Методы управления устройствами. Методы ввода-вывода. Концепции программирования ввода-вывода. Диспетчер и планировщик ввода-вывода.
- 40. Вопросы использования ОС. Способы получения различных характеристик в определенной версии ОС. Системы программирования, взаимодействие с ОС. Банки данных, взаимодействие с ОС. Пакеты прикладных программ, взаимодействие с ОС.
- 41. Системы и языки программирования. Машинно-ориентированные и проблемно-ориентированные.
- 42. Алфавит, синтаксис и семантика. Способы описания языков программирования.
 - 43. Трансляция. Однопроходные и оптимизирующие трансляторы.
- 44. Типы данных, способы задания типа. Константы и переменные. Идентификаторы. Массивы.
- 45. Выражения, операции, операторы. Арифметические и логические выражения. Ранги операций. Стек и польская запись.
 - 46. Программирование ввода и вывода информации. Форматы. Редактирование.
 - 47. Блочная структура. Локализация переменных и меток.
- 48. Подпрограммы и макроопределения. Методы передачи параметров при использовании подпрограмм и макрокоманд.
 - 49. Секционирование программ и установление связей между секциями.
 - 50. Возможности программирования параллельных процессов

Разработчики:

ОАНО ВО ВУиТ Кафедра		
«Промышленная		
информатика»	Зав. кафедрой	Куралесова Н.О.
(место работы)	(занимаемая должность)	(инициалы, фамилия)